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Abstract 

The possibilities of the X-ray triple-crystal diffrac- 
tometry (TCD) method in studying the tails of rocking 
curves of both a perfect crystal and a crystal with a 
disturbed surface layer are shown. It was found that 
at large deviation angles (a)  from the Bragg condition 
the pseudopeak of the TCD curves significantly 
exceeds the main peak. The thermal diffuse scattering 
in the monochromator crystal is discussed as one of 
the reasons for this effect. This phenomenon is also 
responsible for the violation of the I ( a ) o c l / a  2 
dependence in double-crystal diffractometry (DCD). 
By measuring the intensities of the main peaks of 
TCD curves, it is possible to separate the diffuse and 
the coherent scattering components in the rocking 
curves obtained by DCD. 

I. Introduction 

Much attention has been paid in the last few years 
to the study of surface-layer structures by X-ray 
diffraction. It is well known that the shape of a rocking 
curve (RC) of a crystal with a disturbed surface layer 
changes with respect to that of an ideal crystal, due 
to the depth distribution of the lattice strain Ad/d  
and the atomic disorder in the layer. 

Several methods have been developed to fit the 
experimental rocking curves. For example, the 
method of computing directly the RC by the Takagi- 
Taupin equations (Burgeat & Taupin, 1968; Fukuhara 
& Takano, 1977), the method of integral characteris- 
tics (Afanasev, Kovalchuk, Kovev & Kohn, 1977; 
Kohn, Kovalchuk, Imamov & Lobanovich, 1981) and 
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the methods based on the kinematical theory of X-ray 
diffraction (Kyutt, Petrashen & Sorokin, 1980; 
Speriosu, Glass & Kobayashi, 1979; Kohn, Prilepsky 
& Sukhodreva, 1984) are noteworthy. All these 
methods deal with the analysis of the angular depen- 
dence of the coherent-scattering components. 
However, most of the RC measurements are carried 
out by a double-crystal diffractometer arranged in the 
parallel non-dispersive ( n , - n )  setting, in which all 
the intensity scattered by the sample is collected. This 
intensity contains not only a coherent contribution 
but also a diffuse scattering, which modifies the RC 
shape. As will be shown by an example relating to 
the study of a surface-implanted layer, this effect can 
lead to either a distortion or an entire loss of informa- 
tion about the surface-layer structure. The study of 
samples with surface layers containing a lot of defects 
can be carried out effectively by the method of triple- 
crystal X-ray diffractometry (TCD). This method 
makes possible the separation of the coherent and 
diffuse contributions by analysis of the angular 
intensity distribution with the help of the third crystal 
(analyzer). Successfully used by Iida & Kohra (1979), 
the TCD method has been widely applied lately (for 
example, by Afanasev, Aleksandrov, Imamov, Lomov 
& Zavyalova, 1984; Cembali, Servidori, Solmi, 
Sourek, Winter & Zaumseil, 1986; Zaumseil, Winter, 
Cembali, Servidori & Sourek, 1987). Of course, the 
TCD method is more complicated and difficult in 
comparison with the double-crystal X-ray diffrac- 
tometry (DCD) method. It is necessary to measure 
the entire TCD curve or, at least, the integral intensity 
of the main peak of this curve to obtain only one 
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experimental point for the RC. Also, for the practical 
realization of this method, more complicated multi- 
crystal diffractometers are necessary. Nevertheless, 
when there is strong diffuse scattering in a sample, 
this approach is the only correct one. Moreover, even 
in the absence of diffuse scattering from the crystal 
defects, as will be shown below by the analysis of a 
rather wide angular region of the RC of a perfect 
crystal, the tails of the RC contain additional intensity 
due to thermal diffuse scattering (TDS) from the 
monochromator  crystal. In both cases (diffuse scatter- 
ing from the defects and TDS), the analysis of the 
DCD RC by the theory of coherent X-ray scattering 
can lead to significant mistakes (for example, to the 
wrong deformation profiles obtained by computer 
simulation). 

The purpose of the present work is a qualitative 
comparison of the DCD and TCD methods in the 
analysis of the surface-layer structures of single crys- 
tals. The physical reasons for some peculiarities 
observed in experimental rocking curves are also 
given. 

In the next section, the comparative analysis of the 
experimental rocking curves of a single crystal, 
obtained by double- and triple-crystal diffractometry 
methods, is given. In § 3 the role of the thermal diffuse 
scattering from the monochromator crystal is dis- 
cussed and its contribution to the intensity of the 
pseudopeak of the spectrum is calculated. The results 
of the separate measurement of the coherent part of 
the RC, in the presence of a strong diffuse scattering 
from the sample, are presented in § 4. 

2. Tails of the rocking curves of single crystals 

The angular dependence of the X-ray intensity scat- 
tered from a perfect silicon crystal has been measured 
by a double-crystal nondispersive ( n , - n )  parallel 
setting with a symmetrical monochromator crystal. 
Fig. l (a )  (the upper curve) shows the intensity of the 
reflected beam normalized to the intensity of the 
incident beam (DCD rocking curve). We used the 
400 reflection of Mo Ka  radiation of a conventional 
X-ray tube. As is already known (Pinsker, 1978), the 
tails of the rocking curve of a single crystal can be 
described by 

p,~h(o~)= { AroJFh]~ ,,,2 K~ 
\ VfiC ] a 2" (1) 

The intensity decreases as 1 / a :  with increasing angle 
a (deviation from the exact Bragg position for a 
reflected beam). In (1), A is the wavelength, ro = 
e2/mc 2 is the classical electron radius, Fh is the struc- 
ture factor. For silicon, Fh = 8j~ exp ( -Mh) ,  where fh 
is the atomic scattering factor and exp ( -Mh)  is the 
Debye-Waller factor, h is the modulus of the 
reciprocal-lattice vector, V is the volume of a unit 
cell, C = c o s 0 b ,  0b is the Bragg angle, K =  

(1 + C2)/(1 + C2) is the polarization factor, C2 = 
cos 2Oh,/3 = sin (Oh -- r ) / s in  (Oh + r) is the asymmetry 
factor and r is the angle between the reflecting planes 
and the crystal surface. The theoretical curve is shown 
as the lower curve in Fig. l (a) .  One can see that the 
experimental curve decreases more slowly than 1/a 2, 
and that the ratio of the experimental curve to the 
theoretical one increases with increasing a. Such a 
pecularity of the double-crystal rocking-curve tails 
was observed earlier (Cembali, Servidori, Gabilli & 
Lotti, 1985; Zaumseil, 1985) but the reason for this 
effect has not been discussed. 

Meanwhile, the reason for this phenomenon can 
be determined experimentally by the analysis of the 
TCD curves of a perfect crystal with the increase of 
the angle a. We recall that a TCD curve of an ideal 
crystal consists of two peaks. The first is a main peak 
corresponding to such a position of the crystals (A0 = 
2a in a symmetrical case, A0 being the deviation of 
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Fig. 1. (a) Experimental angular dependences of the pseudopeak 
(open circles) and the main peak (filled circles) and correspond- 
ing theoretical curves (solid lines) for the 400 reflection with 
Mo Ka radiation of a perfect Si crystal. Upper  and lower 
theoretical curves were calculated using (11) and (1), respec- 
tively. The experimental DCD curve is shown by a dotted line. 
(b) The same curves for Cu Ka radiation (the DCD curve is 
not shown). 
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the analyzer crystal from the Bragg position) that 
total X-ray reflection occurs for the monochromator 
and the analyzer crystals. The sample reflects the 
X-rays weakly, since the 
satisfied for large values 
pseudopeak, observed at 
analyzer (A0 = a)  that the 

Bragg condition is not 
of a. The second is a 
such a position of the 
analyzer and the sample 

reflect the X-rays strongly but the monochromator 
crystal reflects them weakly. In the first case, (1) 
corresponds to the sample, in the second case it 
corresponds to the monochromator. We note that in 
the second case the direction of the plane wave com- 
ing from the first crystal is determined by the positions 
of the following two crystals. When the sample con- 
tains defects, besides the coherent peaks, a diffuse 
maximum isalso observed in the TCD curves. 

Typical TCD curves for the 400 reflection of Mo Ka 
radiation are shown in Fig. 2 for different values of 
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Fig. 2. TCD curves o f  a perfect Si crystal (400 reflection, Mo K s  
radiation) for various values o f  a :  (a)  a = 10; (b) a = 50; (c) 
a = 110". I in counts s - ' .  

o~. One can see that at a = 10" the intensities of the 
pseudopeak and the main peak are approximately 
equal to each other. With increasing a, the 
pseudopeak begins to exceed the main peak and at 

= 100" the pseudopeak is more intense by about 
one order of magnitude. We observed the pseudopeak 
clearly even at ~ -  5 °. The result does not change 
with the mutual replacement of the first and second 
crystals. We note that diffuse peaks have not been 
observed in the TCD curves. The a dependences of 
the integral intensity of the main peak and the 
pseudopeak for the 400 diffraction of Si with Mo Ko~ 
radiation are also shown in Fig. l (a) .  One can see 
that the main peak follows (1) perfectly. On the 
contrary, the angular dependence of the pseudopeak 
is close to the double-crystal experimental rocking 
curve. 

The analogous a dependences for the 400 diffrac- 
tion with Cu Ka radiation are shown in Fig. l(b).  
Although the anomalous behavior of the pseudopeak 
is not so marked as in the previous case, nevertheless, 
by a = 200" the pseudopeak is five times higher than 
the main peak. 

Therefore, the deviation of the experimental tails 
of a DCD rocking curve from the theoretical ones 
can be connected to the anomalous angular depen- 
dences of the pseudopeak intensity in the TCD curves. 

3. Contribution of  the thermal diffuse scattering 
from the monochromator  crystal to the intensity of  

the pseudopeak 

As already noted above, in order to consider theoreti- 
cally the RC tails, it is necessary to take into account 
not only the coherent but also the thermal diffuse 
scattering (TDS). In the angular region of the main 
peak, the TDS is extremely small, since only few 
phonons with wave vectors q perpendiuclar to the 
crystal surface take part in it. Phonons with other q 
directions contribute to the TCD curve at different 
values of the scanning angle zl0, but this contribution 
is also small. 

On the other hand, the radiation incident on the 
first crystal has a rather high intensity in a wide 
angular range. It is possible to rescatter by TDS all 
incident X-rays into the plane wave with direction 
determined by subsequent crystals. In other words, a 
photon incident on the first crystal at an arbitrary 
angle could be scattered on a phonon so that the 
resulting plane wave would correspond to the angular 
region of the pseudopeak. 

The situation is illustrated in Fig. 3, where the cross 
section of a crystal on the scattering plane is shown. 
The x axis is directed along the surface, the z axis is 
directed along the outward normal. In the general 
case of asymmetrical scattering, the reciprocal-lattice 
vector h makes an angle z with the z axis. The 
wave vector k of the plane wave incident on the 
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monochromator  crystal can be represented as k =  
ko+Z~o, where ko satisfies exactly the Bragg condition 
ko 2 = k 2, kh = ko+h. The vector no is perpendicular 
to ko and its Cartesian coordinates are 

Zaox = -Kao sin (% - z), 

Aoz = -Kao cos (% - r),  

Aoy = - -Kg0  , 
(2) 

K = 2rr/A, 

where ao is the angle in the scattering plane and 9o 
is the angle in the plane normal to it. 

The wave vector of a scattered wave is k ' =  k~ + ~h 
and the coordinates of Ah are 

Ahx = --Ka sin (Oh + z), Ahy = O, 

~hz = Ka COS (0b + Z). 
(3) 

Fig. 3 shows the vectors ko, kh, Ah and the projec- 
tion of no on the scattering plane. The vector h and 
the angle r are also shown. In the case of coherent 
scattering the vectors Z~o and Z~h can differ only in 
their z components. Therefore, the diffracted wave 
corresponding to the angle a is formed from the 
incident wave at 90 = 0 and ao = a/ f t .  

Besides that, a crystal can emit diffuse waves as a 
result of the scattering of the incident waves with 
arbitrary values of 90 and ao on phonons with wave 
vectors q=Z~h--Z~o. One can obtain a differential 
reflection coefficient corresponding to these waves 
following Afanasev, Kagan & Chukhovskii (1968). If 
a and ao>> AEro]Fhl/ZrV, then 

a2p~OS(a) 

0%090 
h K  fl 

- 2/Xop (1 + fl) 

(4) 

J 

o 

Fig. 3. Scheme describing the TDS contribution to the intensity 
of a scattered wave. 

Here p is the density,/.to is the absorption coefficient, 
tOqx is the phonon frequency and nqa is the number 
of phonons with a wave vector q and a branch number 
A. Va is the polarization vector of the phonons,  ~1 = 
h/h,  h is Plank's constant. 

In the following we shall take into account only 
acoustic phonons with small values of q. For them 

nqx "" T / h t O q x ,  %~=C~(n)q ,  n = q / q ,  (5) 

where T is the temperature in energy units. These 
phonons alone give the most significant contribution 
to (4). It is very convenient to introduce the following 
quantity (Kohn, 1970): 

]lqV, ]2 
Cj2(n) ='~-" C](n) - "r/'D'k'(n)'r/k' (6) 

where Dik(n) is a dynamical matrix for the acoustic 
phonons. In cubic crystals, 

D,k(n) = p- l [  6,k(an~ + b) + (1 - 8,k)mn,nk]. (7) 

In (7), a -- C l l -  C44, b = C44, m = C12+ C44, where 
C,1, C12, G4 are elastic constants, gig is the 
Kronecker symbol. 

By taking these relations into account one can 
rewrite (4) in the following form: 

O2p~DS(a) 

aUO 090 

TK fl (Aroh Fh ~2 C f ( n )  

=2tZo p ( l + f l ) \  ~ ] ( 0 ~ + 9 2 + 0 2 )  ' (8) 

where O~ = - a  sin 20b, Oo = ao+ a COS 20b. 
The TDS contribution to the pseudopeak is defined 

by the angular distribution of the incident radiation. 
If the incident radiation has a notable divergence, 
then the specific form of the angular limits is not so 
important. Let us consider that the incident beam 
contains all the rays inside a cone with an apex angle 
O. For the integration of (8), we shall use the variable 
0o instead of ao and neglect the shift of boundaries 
because I 1< o. Then in the integral 

I:~d9od~boC-~2(n)/.(t~+92+d/2), (9) 

we shall use the polar coordinates 90 = p  cos s ¢ and 
0o = p sin s c, and the following approximation 

Cj2(n)  ~- c 7  2 -  C ? ( n o ) ,  p < ¢,~ 

27 (10) 
C-~2(n)~-C22=--(1/Ezr) ~ dscC~-E[noo(~:)], p>~bm, 

0 

where no and no~(~) are the directions of q at p = 0  
and p = oo, respectively. 

As a result, the integral can be easily calculated 
and for the TDS contribution to the reflection 
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coefficient we obtain 

p~DS(a) _ _ - -  
47rp/xo (1 +/3) 

In 2 I x (Ci -2-  C22) --~---+ C22 In 
a sin 20b 

(11) 

From (11) it follows that the TDS contribution to 
the pseudopeak has a weaker logarithmic dependence 
on a, another dependence on the wavelength (through 
/Zo) and a different dependence on the order of reflec- 
tion in comparison with the coherent scattering. In 
the general case the pseudopeak intensity is defined 
by the sum of the contributions of P~°h(a) and 
PTR°S(a), whereas the main peak is defined only by 
the coherent contribution to the reflection coefficient 
of the sample. If we have an asymmetrical reflection 
(/3 # 1) for the first crystal and a symmetrical reflec- 
tion (/3 = 1) for the sample, the difference between 
the main peak and the pseudopeak would be observed 
even in the angular region where the TDS contribu- 
tion is negligible. 

Below we shall consider in more detail the case of 
symmetrical reflections for all three crystals. In this 
case, at small values of a, p~OS~ "RDC°h and the 
pseudopeak is equal to the main peak Ipp - r _ ocoh - -  ~ m p -  ~ R  • 

( v~DS p~h With increasing a over the value a = Ol.pp = 

at  Ol.pp), the intensity of the pseudopeak Ipp= 
p-~OS + p~oh begins to exceed the intensity of the main 
peak Imp = ocoh --R • At large values of a only pTRDS 
remains. 

In Fig. 1, one can see the results of the calculations 
(solid lines) with (1) and (11) for the experiments 
discussed above. The theoretical and experimental 
curves for Imp are in very good agreement for both 
cases of the 400 reflections with Mo Ka and Cu Ka 
radiations. By taking the TDS contribution into 
account, the correspondence of Ipp with the experi- 
ment improves significantly. In both cases, all the 
experimental points of Ipp are higher than the theoreti- 
cal curves and the most significant difference is in the 
range a ------ app. The difference decreases with increas- 
ing a and a good agreement is observed for a > 1000" 
(see Fig. l a). Note that the calculations were carried 
out without any fitting parameter. 

It is natural to suppose that, besides the considered 
one-phonon TDS, other mechanisms of scattering, 
such as a multiphonon diffuse scattering or diffuse 
scattering by microdefects, contribute to the 
pseudopeak intensity. The contribution of these pro- 
cesses decreases more sharply at large values of a 
and has the analogous dependences on a for a > app. 
We note that the analysis of the pseudopeak in such 
cases can be used for studying the diffuse scattering 
in perfect crystals. 

The double-crystal RC P2RC(a) corresponds to the 
integral of the TCD curve over the scanning angle 
A0. Besides the main peak and the pseudopeak the 
TCD curve contains also a diffuse contribution. 
Though a diffuse maximum is not observed the ther- 
mal diffuse scattering from the sample contributes to 
P~C by an amount comparable with p~DS. Therefore, 
we can consider that p2RC(a)= bPXR os~'~oc°h --'---g , where 
b is a numerical coefficient ( l < b < 2 ) .  This is the 
reason that the experimental points of P2C(a) are 
higher than Ipp for all the values of a. 

As a result of the analysis performed above, we 
can conclude that the double-crystal rocking curves 
can be used in the frame of the coherent scattering 
theory only in the angular range a < app. From the 
condition Ipp = Imp, the value of olpp is easily estimated 
as the root of the following equation: 

Th4c°s20bC22o~21n ] t~ ] 
87rp/xo a sin 20b = 1. (12) 

For our experimental conditions (the angular diver- 
gence of the incident beam qO = 2°), the calculated 
values of app were 45" for Mo Ka and 175" for Cu Ka 
radiation (the correspondent experimental values 
were 30 and 120"). 

As has been noted by Kohn, Prilepsky & Sukho- 
dreva (1984), the high-order reflections are the most 
informative ones in the structural diagnostics of 
single-crystal surface layers for two reasons. Firstly, 
because of the increase in the extinction length the 
reflection of the layer becomes kinematical. Secondly, 
there is an increase of the Bragg-angle shift for the 
reflection by the layer with some lattice strain. On 
the other hand, according to (12), in this case we 
have an upper limit on the angular region under 
consideration. The larger the value of h, the stricter 
is this limitation. Note that such problems do not 
arise when the RC is obtained by the TCD method. 

4. Crystals with a disturbed surface layer 

In this section we present the results of the study of 
real single crystals with a disturbed surface layer 
obtained by the DCD and TCD methods. Si crystals 
of (100) surface orientation were implanted by B ÷ 
ions at 100 keV energy and 1019m -2 dose and sub- 
sequently annealed in an oxygen atmosphere at 
1070 K for 10 min (sample 1) and at 1270 K for 40 min 
(sample 2). The 400 reflection with Cu K at radiation 
was used. Fig. 4 shows the RCs of the first sample. 
Curve (1) was measured with the DCD method and 
curve (2) is the coherent part of the RC obtained by 
means of the main peak of the TCD curves. The RCs 
for the second sample (the notations are the same) 
are shown in Fig. 5. The RCs of a perfect crystal are 
also shown in these figures for comparison. Curves 
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(3) and (4) were obtained with the D C D  and TCD 
methods, respectively. 

As can be seen in Fig. 4, the shapes of  the D C D  
(1) and TCD (2) curves are similar. Both curves show 
a set of oscillations at negative angles a, although 
oscillations are sharper on curve (2). On the whole, 
curve (2) lies below curve (1). One can see that on 
average the intensities of  the RCs of the sample and 
the perfect crystal are nearly equal for D C D  and TCD 
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Fig. 4. Experimental rocking curves measured by the DCD 
[(1), (3)] and TCD [(2), (4)] methods for the first sample 
[(1), (2)] and for a perfect crystal [(3), (4)]. 
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Fig. 5. The same as in Fig. 4 but for the second sample. 

methods. The analysis of  the TCD curves of  the first 
sample (Fig. 6b) shows that there is no noticeable 
diffuse scattering by microdefects. The difference in 
the TCD and D C D  curves in this case is therefore 
mainly due to the contribution of the thermal diffuse 
scattering discussed above. 

The situation is quite different for the second 
sample (Fig. 5). According to electron microscopy 
studies there is a large density of dislocation loops 
in the surface layer. The intensity of the D C D  curve 
(1) is significantly higher than the intensity of the 
D C D  curve (3) of  the perfect crystal, because of  the 
strong diffuse scattering by the microdefects. One can 
observe the broad and intense diffuse maximum on 
the TCD curves of  this sample (Fig. 6c). The 
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Fig. 6. TCD curves for (a) a perfect crystal, (b) the first and (c) 
the second samples. I in counts s -~. 
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integrated values of the main peak were calculated 
in this case using the assumption that the angular 
dependence of the diffuse scattering intensity has no 
peculiarities and can be approximated by the linear 
function in the angular range of the main peak. The 
accuracy of the integrated values were estimated as 
10-15%. The tails of the TCD curve (2) fall sharply 
with the increase of [a[ and at a > 0  one can see a 
weak maximum which is due to the deformation of 
the layer by the activated implanted B atoms. The 
angular position of this maximum allows one to evalu- 
ate the average lattice deformation of the layer as 
Ad/d ~- -2 .8  x 10 -4. It is impossible to obtain quanti- 
tative information of this kind using the DCD curve 
(1). As follows from kinematical theory, a sharp 
decrease of the TCD curve intensity is connected with 
the layer lattice disorder, described by the small value 
of the Debye-Waller factor exp ( - W )  (see, for 
example, Afanasev, Aleksandrov, Imamov, Lomov & 
Zavyalova, 1984). 

Therefore, for sample (2) the RC measured by the 
DCD method is the angular dependence of the sum 
of the intensities of the strong diffuse waves and the 
extremely weak coherent wave. The TCD method 
allows one to measure a weak coherent component 
on the background of an intense diffuse scattering, 
which can be two or three orders of magnitude higher 
than the coherent one (Kazimirov, Kovalchuk & 
Kohn, 1987). 

The authors thank S. Yu. Shiryaev for supplying 
the samples and for useful discussions. 
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Abstract 

Impurity-atom fluorescence excited by X-ray stand- 
ing waves in the Laue case of X-ray diffraction has 
been investigated experimentally and theoretically. 
Possibilities for location of impurity atoms in the bulk 
and the surface layer of single crystals are discussed. 
The experiments were carried out on silicon crystals 
of different thicknesses doped with germanium. The 
general approach for calculation of the fluorescence- 
yield angular curves has been developed. In the case 
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of the uniform distribution of impurity atoms in the 
bulk of a crystal and also in the case of the kinematical 
X-ray diffraction on a thin surface layer, analytical 
expressions can be used. 

1. Introduction 
According to dynamical theory, during X-ray diffrac- 
tion in a nearly perfect crystal X-ray standing waves 
(XSW) are generated. The period of this wave is equal 
to or smaller by an integer than the interplanar 
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